Introduction

- Speaker Introduction
- Audience Background
- Today’s Topics
 - Why Ground Improvement
 - Dynamic Compaction
 - Lightweight Fill
 - Wick Drains
 - Stone Columns
• Increase Bearing Capacity / Control Deformation
 ◦ Site Conditions
 • Uncontrolled Fills
 • Loose Sands
 • Under Consolidated Clays
 ◦ Strategies
 • Deep Dynamic Compaction
 • Vibro Compaction
 • Surcharge / Wick Drain
 • Stone Columns
 • Geosynthetics
 • Soil Mixing / Grouting

Why Ground Improvement?

• Accelerate Consolidation
 ◦ Site Conditions
 • Compressible Fine-Grained Soils
 • Uncontrolled Fill
 ◦ Strategies
 • Surcharge Loads
 • Wick Drains
 • Dynamic / Vibro Compaction

Why Ground Improvement?
Why Ground Improvement?

- Decrease Imposed Loads
 - Site Conditions
 - Under Consolidated Fine-Grained Soils
 - Underlying Loose Granular Materials
 - Strategies
 - Lightweight Fill
 - Geosynthetics

Why Ground Improvement?

- Lateral Stability / Seepage Cutoff / Liquefaction
 - Site Conditions
 - Under Consolidated Fine-Grained Soils
 - Permeable Granular Soils
 - Silt Soils Above Water Table
 - Strategies
 - Surcharge
 - Wick Drains
 - Grouting
 - Stone Columns
 - Soil Mixing
Dynamic Compaction

- **Description**
 - Application of high levels of energy at the ground surface

- **Methodology**
 - Crane and Tamper
 - Free Fall Drop on Grid Pattern
 - Drop Height of 40 feet to 60 feet
 - Tamper Weight of 10 tons to 20 tons
 - Tamper Diameter ~ 5 feet

- **Typical Application**
 - Densification of Loose / Uncontrolled Fills
 - Collapse of Large Voids
 - Liquefaction Control
 - Effective Depth ~ 20 Feet
Dynamic Compaction

Advantages
- Tamper serves as probe & correction tool
- Densification observed during work
- Same equipment over range of materials
- Uniform bearing to minimize differential settlement
- Perform during inclement weather

Disadvantages
- All material compacted is not observed
- Ground vibrations
- Utilities / buried structures
- Granular soil types above water table

Dynamic Compaction

Feasibility Evaluation
- Degree of Saturation
- Presence of Hard/Weak Layers
- Permeability of Soil Mass (Zones I, II, and III soils)
 - Zone I \(\rightarrow \) permeability > 1×10^{-3} cm/sec – clean sands (good)
 - Zone II \(\rightarrow \) permeability 1×10^{-3} to 1×10^{-6} cm/sec + Plastic Index < 8 + unsaturated – silty sands (marginal)
 - Zone III \(\rightarrow \) permeability < 1×10^{-6} cm/sec + Plastic Index > 8 (not suitable)
• **Vibrations**

 - Design
 - Depth & Degree of Improvement
 - Tamper Weight
 - Height of Drop
 - Energy Requirements
 - Applied Energy
 - Grid Spacing
 - Number of Drops
 - Specification
 - Performance (Degree of Improvement)
 - Monitoring & Verification
 - Cost
 - $1.00 - $2.50 per square of surface area

Dynamic Compaction
Lightweight Fill

- Types
 - Recycled Materials
 - Tire Chips
 - Wood / Saw Dust
 - Fly Ash
 - Boiler Slag
 - Manufactured Materials
 - Geofoam
 - Expanded Clay or Shale
• Typical Applications
 ◦ Reduce stress on soft soils (settlement)
 ◦ Reduce driving forces (retaining wall / slopes)
 ◦ Reduce seismic inertia forces
 ◦ Limited weather restrictions

• Limitations
 ◦ Availability
 ◦ Durability
 ◦ Environmental
 ◦ Geothermal Properties

Lightweight Fill

<table>
<thead>
<tr>
<th>Type</th>
<th>Density (pcf)</th>
<th>Approximate Cost $/cu. yd. (FHWA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typical Soil (wet)</td>
<td>125 - 140</td>
<td>--</td>
</tr>
<tr>
<td>Geofoam (EPS)</td>
<td>0.6 – 2.0</td>
<td>25 – 50 (Plant)</td>
</tr>
<tr>
<td>Foamed Concrete</td>
<td>20 – 50</td>
<td>40 – 65</td>
</tr>
<tr>
<td>Shredded Tires</td>
<td>40 – 60</td>
<td>15 – 25</td>
</tr>
<tr>
<td>Expanded Shale/Clay</td>
<td>40 – 90</td>
<td>30 – 45 (Plant)</td>
</tr>
<tr>
<td>Fly Ash</td>
<td>70 – 90</td>
<td>10 – 20</td>
</tr>
<tr>
<td>Wood Fiber</td>
<td>40 – 65</td>
<td>10 – 15</td>
</tr>
<tr>
<td>Boiler Slag</td>
<td>60 – 115</td>
<td>5 – 10</td>
</tr>
</tbody>
</table>
Lightweight Fill - Geofoam

Manufactured Cellular Materials - Geofoam
- Expanded or Extruded Polystyrene (EPS / XPS)

Design
- Compressive Strength ~ 2.5 psi to 16 psi @ 1-5% strain
- Density ~ 0.6 to 2.0 pcf → up to 6.0 pcf water adsorption
- Coefficient of Lateral Earth Pressure ~ 0.1 vertical
- No decay in ground
- Buoyancy
- Petroleum / Geomembrane

Construction
- Leveling Course
- Interlock joints w/ mechanical connection
- Cover immediately due to wind, sun, buoyancy

Lightweight Fill - Foamed Concrete

Manufactured Foam Mixed On-Site
- Add preformed foam (shaving cream) to cement-water slurry

Design
- Compressive Strength - 110 psi to 150 psi varies w/ density
- Density - 20 to 50 pcf
- Use below freeze-thaw
- Buoyancy

Construction
- Need staging area
- Very fluid → tight forms and/or polyethylene
- 2 to 5 feet lift thickness (heat of hydration impacts foam)
- 12-hour wait between lifts
Manufactured Expanded Clays & Shales
- Heated 1,800 to 2,200 degrees Fahrenheit
- No clay mineral rehydration under atmospheric conditions
- Expensive to manufacture
- Granular material behavior (no compressive strength)

Design
- Angle of Shearing Resistance ~ 37 to 44 degrees
- Density ~ 40 to 90 pcf
- Coefficient of Lateral Earth Pressure ~ 0.27
- Adsorb water after placement (4-5 times placement %)
- Two feet thick soil cover

Construction
- Steel tracks breakdown – use rubber tires
- Use lightweight equipment to spread

Lightweight Fill – Exp. Clay/Shale

Recycled Tires
- Typically shredded into 3.0 to 8.0 inches particles (no crumb rubber)
- Granular material behavior (no compressive strength)

Design
- Angle of Shearing Resistance ~ 19 to 25 degrees
- Density ~ 40 to 60 pcf
- Coefficient of Lateral Earth Pressure ~ 0.26 to 0.47
- May leach metals in acidic conditions
- Spontaneous Combustion (Limit to lifts to 10 feet thick)
- Keep above water table / good drainage to avoid seepage
- Filtration Geotextile for adjacent soils
- Exposed wires (removed or 98% covered)

Construction
- 35% volume reduction during compaction
- 10% volume reduction with final cover

Lightweight Fill – Shredded Tires
Recycled Material from burning process
- Fly Ash → Finer airborne particles (Class C or F)
- Slag → Larger Particles that fall to bottom

Design
- Potentially Expansive! (sulfate & entriginite)
- Angle of Shearing Resistance ~ 33 to 42 degrees
- Density ~ 40 to 90 pcf
- Fly Ash is compressible / Slag is granular
- Fly Ash alkaline leachate (pH 6.2 to 11.5)

Construction
- Fly Ash similar to silt
- Slag similar to sandy or gravelly material

Lightweight Fill – Fly Ash / Slag

Recycled Wood Waste from Sawmill
- Hog Fuel (bark), sawdust, and planer chips
- Geographically limited
- Degradation as exposed to oxygen

Design
- Leachate Acidic (pH 4-6) & May Contain Toxins
- Spontaneous Combustion Potential
- Angle of Shearing Resistance ~ 25 to 49 degrees
- Density ~ 40 to 90 pcf
- Two Feet thick surface cover

Construction
- Fly Ash similar to silt
- Slag similar to sandy or gravelly material

Lightweight Fill – Wood
Surcharge / Wick Drains

• Settlement Drivers (Fine-Grained Soils)
 ◦ Load
 ◦ Drainage
Surcharge

- Increase Load on Compressible Layer
- Accelerate Drainage
- Accelerate Time

Design

- Material Availability
- Dead Weight (Typically Soil, Concrete, Topsoil)
- Soil Wet Weight 125 to 140 psf per foot of height
- Time Estimates

Construction

- Excess Soil Disposal
- Instrumentation

Surcharge
Wick Drains

- Methodology
 - Install drains in subsurface
 - Decrease drainage path
 - Sand Drains (similar application)
 - Prefabricated Vertical Drains

- Applicability
 - Low Permeability Soil
 - Fully Saturated
 - Silts, Clays, Sludges, etc.
 - Liquefaction Reduction
 - Not used for highly organic soils / creep settlement
Wick Drains

- **Feasibility**
 - Install drains in subsurface
 - Sand Drains
 - Prefabricated Vertical Drains
 - Decrease Drainage Path

- **Applicability**
 - Low Permeability Soil
 - Fully Saturated
 - Silts, Clays, Sludges, etc.
 - Liquefaction Reduction
 - Not used for highly organic soils / creep settlement

Wick Drains
Stone Columns

- **Description**
 - Install backfill material (stone/concrete) at discrete intervals
 - Tightly interlocked with surrounding soil

- **Methodology**
 - Vibro-Replacement (Wet / Top-Feed / Jetting / Spoils)
 - Vibro-Displacement (Dry / Top or Bottom - Feed / No Spoils)

- **Typical Application**
 - Increase Bearing Capacity / Control Settlement
 - Liquefaction Mitigation
 - Slope Stability

Stone Columns
Stone Columns

- Advantages
 - Use shallow foundations
 - Ground Supported Floor Slab
 - Alternative to overexcavation and replacement
 - Shallow Groundwater
 - Environmental Concerns
 - Lower Vibrations

- Disadvantages
 - Obstructions
 - Lateral Ground Displacement
 - Very Soft Strata / Peat

Stone Columns

- Design Concepts
 - Composite Shear Strength of Soil-Stone Column
 - Area Replacement Ratio (10-40%)
 - Spacing (5.0 -10 FT) & Diameter (1.5-3.0 FT)
 - Stress Ratio (equal deformation)
• Alternate Systems
 ◦ Vibro-Replacement Concrete Columns (~ CMCs)
 ◦ Same as driven or bored pile
 ◦ Granular mat with geosynthetics
 ◦ Not connected to structure
 ◦ Geopiers
 ◦ Same design concept as general stone columns
 ◦ Ramming actions improves stone strength
 ◦ Higher Stiffness Ratio (up to 10 for columns, 6 for slopes)
 ◦ Minimum replacement ratio of 33%

QUESTIONS?

Laurence W. Keller, P.E.
908.668.7777
lkeller@whitestoneassoc.com

James M. Morgan
215.712.2710
jmorgan@whitestoneassoc.com